3.3.58 \(\int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [258]

Optimal. Leaf size=214 \[ -\frac {5 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-5*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d-1/4*sec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*sec(d*x
+c))^(5/2)-15/16*sec(d*x+c)^(5/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+115/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*
sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)+35/16*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(a+
a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.39, antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3901, 4104, 4106, 4108, 3893, 212, 3886, 221} \begin {gather*} \frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {5 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{5/2} d}+\frac {35 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {15 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(9/2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-5*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) + (115*ArcTanh[(Sqrt[a]*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Sec[c + d*x]^(7/2)*Sin[c +
 d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - (15*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3
/2)) + (35*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4106

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m
+ n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 -
 b^2, 0] && GtQ[n, 1]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {\int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (\frac {5 a}{2}-5 a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {45 a^2}{4}-\frac {35}{2} a^2 \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {35 a^3}{4}+20 a^3 \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^5}\\ &=-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {5 \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{2 a^3}+\frac {115 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {5 \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^3 d}-\frac {115 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {5 \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {115 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.25, size = 340, normalized size = 1.59 \begin {gather*} \frac {70 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+110 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)+32 \sqrt {1-\sec (c+d x)} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)-115 \sqrt {2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-230 \sqrt {2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-115 \sqrt {2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec ^2(c+d x) \tan (c+d x)+70 \text {ArcSin}\left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)+230 \text {ArcSin}\left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)}{32 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(9/2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(70*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 110*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin
[c + d*x] + 32*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(7/2)*Sin[c + d*x] - 115*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c
 + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] - 230*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[
c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - 115*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]
*Sec[c + d*x]^2*Tan[c + d*x] + 70*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x] + 230*ArcSi
n[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x])/(32*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(
5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(453\) vs. \(2(177)=354\).
time = 0.16, size = 454, normalized size = 2.12

method result size
default \(-\frac {\left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {9}{2}} \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right )^{2} \left (40 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-40 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+35 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-115 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )+40 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-40 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+20 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-115 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )-39 \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-16 \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right )}{16 d \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{5} a^{3}}\) \(454\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/16/d*(1/cos(d*x+c))^(9/2)*cos(d*x+c)^4*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(40*cos(d*x+c)
^2*sin(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))-40*cos(d*x+c)^2*
sin(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))+35*cos(d*x+c)^3*(-2
/(1+cos(d*x+c)))^(1/2)-115*cos(d*x+c)^2*sin(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))+40*cos(d*x
+c)*sin(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))-40*cos(d*x+c)*s
in(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))+20*cos(d*x+c)^2*(-2/
(1+cos(d*x+c)))^(1/2)-115*cos(d*x+c)*sin(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))-39*cos(d*x+c)
*(-2/(1+cos(d*x+c)))^(1/2)-16*(-2/(1+cos(d*x+c)))^(1/2))/(-2/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^5/a^3

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 9048 vs. \(2 (177) = 354\).
time = 4.55, size = 9048, normalized size = 42.28 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-1/32*(140*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 4*sin(5/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + 8*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c))))*cos(11/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 16*(75*sin(9/4*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c))) + 24*sin(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 24*sin(5/4*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c))) - 75*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 35*sin(1/4*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 300*(sin(6*d*
x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 8*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
 96*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 8*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + 32*(24*sin(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 75*sin(3/4*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c))) + 35*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) - 96*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 4*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 300*(sin(6*d*x + 6
*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/
4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 140*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*
c))*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 40*(sqrt(2)*cos(6*d*x + 6*c)^2 + 49*sqrt(2)*cos(4*d
*x + 4*c)^2 + 49*sqrt(2)*cos(2*d*x + 2*c)^2 + 16*sqrt(2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^
2 + 64*sqrt(2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 16*sqrt(2)*cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 49*sqrt(2)*sin(4*d*x + 4*c)^2 + 98*sqrt(2)*sin(4*d*
x + 4*c)*sin(2*d*x + 2*c) + 49*sqrt(2)*sin(2*d*x + 2*c)^2 + 16*sqrt(2)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c)))^2 + 64*sqrt(2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 16*sqrt(2)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*(7*sqrt(2)*cos(4*d*x + 4*c) + 7*sqrt(2)*cos(2*d*x + 2*c) + sqrt(
2))*cos(6*d*x + 6*c) + 14*(7*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 8*(sqrt(2)*cos(6*d*x + 6*c
) + 7*sqrt(2)*cos(4*d*x + 4*c) + 7*sqrt(2)*cos(2*d*x + 2*c) + 8*sqrt(2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sqrt(2))*cos(5/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + 16*(sqrt(2)*cos(6*d*x + 6*c) + 7*sqrt(2)*cos(4*d*x + 4*c) + 7*sqrt(2)*cos(
2*d*x + 2*c) + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sqrt(2))*cos(3/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))) + 8*(sqrt(2)*cos(6*d*x + 6*c) + 7*sqrt(2)*cos(4*d*x + 4*c) + 7*sqrt(2)*cos(2*d
*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 14*(sqrt(2)*sin(4*d*x + 4*c) + sqr
t(2)*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 8*(sqrt(2)*sin(6*d*x + 6*c) + 7*sqrt(2)*sin(4*d*x + 4*c) + 7*sqrt(2)
*sin(2*d*x + 2*c) + 8*sqrt(2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 16*(sqrt(2)*sin(
6*d*x + 6*c) + 7*sqrt(2)*sin(4*d*x + 4*c) + 7*sqrt(2)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 8*(sqrt(2)*sin(6*d*x + 6*c)
+ 7*sqrt(2)*sin(4*d*x + 4*c) + 7*sqrt(2)*sin(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))
) + 14*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*si
n(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 40*(sqrt(2)*cos(6*d*x + 6*c)^2
 + 49*sqrt(2)*cos(4*d*x + 4*c)^2 + 49*sqrt(2)*cos(2*d*x + 2*c)^2 + 16*sqrt(2)*cos(5/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c)))^2 + 64*sqrt(2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 16*sqrt(2)*cos(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 49*sqrt(2)*sin(4*d*x + 4*c)^2
+ 98*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 49*sqrt(2)*sin(2*d*x + 2*c)^2 + 16*sqrt(2)*sin(5/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 64*sqrt(2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 16*
sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*(7*sqrt(2)*cos(4*d*x + 4*c) + 7*sqrt(2)*cos
(2*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 14*...

________________________________________________________________________________________

Fricas [A]
time = 3.02, size = 667, normalized size = 3.12 \begin {gather*} \left [\frac {115 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 80 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (35 \, \cos \left (d x + c\right )^{2} + 55 \, \cos \left (d x + c\right ) + 16\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {115 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 80 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) - \frac {2 \, {\left (35 \, \cos \left (d x + c\right )^{2} + 55 \, \cos \left (d x + c\right ) + 16\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2
*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) -
3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 80*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt
(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x +
 c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(35*cos(d
*x + c)^2 + 55*cos(d*x + c) + 16)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^
3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(115*sqrt(2)*(cos(d*x + c)^
3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 80*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(
-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^
2 - a*cos(d*x + c) - 2*a)) - 2*(35*cos(d*x + c)^2 + 55*cos(d*x + c) + 16)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a
^3*d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(9/2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(9/2)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(9/2)/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(9/2)/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________